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We study the properties of random walks on complex trees. We observe that the absence of loops is reflected
in physical observables showing large differences with respect to their looped counterparts. First, both the
vertex discovery rate and the mean topological displacement from the origin present a considerable slowing
down in the tree case. Second, the mean first passage time �MFPT� displays a logarithmic degree dependence,
in contrast to the inverse degree shape exhibited in looped networks. This deviation can be ascribed to the
dominance of source-target topological distance in trees. To show this, we study the distance dependence of a
symmetrized MFPT and derive its logarithmic profile, obtaining good agreement with simulation results. These
unique properties shed light on the recently reported anomalies observed in diffusive dynamical systems on
trees.
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I. INTRODUCTION

Diffusion problems on tree structures pop up in a wide
range of scientific domains, such as theoretical physics
�1–3�, computer science �4,5�, phylogenetic analysis �6�, and
cognitive science �7�. Moreover, dynamics in tree structures
have gained renewed interest in the physics community as a
spin-off from the attention devoted to the structural proper-
ties of complex networks �8,9� and dynamical processes tak-
ing place on top of them �10�. Thus, along with the widely
explored scale-free �SF� networks �11�, SF trees have also
started to be used as underlying topologies for dynamical
processes. Interestingly, the absence of loops in trees turns
out to have a strong impact on the dynamics considered, and
relevant differences between looped networks and tree to-
pologies have recently been reported in several dynamical
models, such as the voter model �12�, the naming game �13�,
the random walk and pair-annihilation processes �14�, and a
model for norm spreading �15�. The properties of most dy-
namical processes on looped networks can be reasonably ac-
counted for by annealed mean-field theories �10�, which rely
only on information about the degree distribution and degree
correlations �16�, and consider the network as maximally
random in all other respects. The behavior observed in trees,
different from the annealed mean-field predictions, must thus
be explained in terms of the nonlocal constraint of the ab-
sence of loops imposed in these kinds of graphs, which is
hard to implement in theoretical approaches.

In this paper, we explore the peculiarities induced in dy-
namical processes by the absence of loops by considering the
simplest possible example, namely, the uncorrelated random
walk �17,18�. Several works have been devoted in the past to
the study of random walks on complex networks, showing in
general a good agreement between theory and simulations on
looped networks, while differences were reported in tree net-
works in Ref. �14�. Here, we find that the global constraint of
lack of loops induces a general slowing down of diffusion, as
measured by the network coverage and the mean topological
displacement from the origin. As well, it profoundly alters
the degree dependence of the mean first passage time. This is
due to the fact that the source-target distance dominates in

trees. In order to account for this feature, we study the mean
round trip time versus distance and find an analytic expres-
sion for its dependence on degree.

II. RANDOM WALKS ON COMPLEX NETWORKS AND
TREES

We consider random walks on general networks defined
by a walker that, located on a given vertex of degree k at
time t, hops with probability 1 /k to one of the k neighbors of
that vertex at time t+1. We have measured the properties of
random walks on growing SF trees created with the linear
preferential attachment �LPA� algorithm �11,19�: at each time
step s, a new vertex with m edges is added to the network
and connected to an existing vertex s� of degree ks� with
probability �s→s�= �ks�+a� / �2m+a�s. This process is iter-
ated until the desired size N is reached. The resulting net-
work has degree distribution P�k��k−� with tunable expo-
nent �=3+a /m, with ��3 for a�0. For m=1 the LPA
model yields a strict tree topology. Degree correlations, mea-
sured by the average degree of the nearest neighbors of the

vertices of degree k �20�, are given by k̄NN�k�
�N�3−��/��−1�k−3+� �21�. Therefore, only for �=3 �a=0� do
we expect to obtain uncorrelated networks.

In order to explore the intrinsic properties of a tree topol-
ogy, disregarding SF effects, we have also considered homo-
geneous networks. In the growing exponential network
model �EM� �9�, at each time step s a new vertex with m
edges is added to the network, and it is connected to m ran-
domly chosen other vertices. In the continuous degree ap-
proximation �i.e., considering the degree as a continuous
variable and substituting sums by integrals�, this model leads
to networks with an exponential degree distribution P�k�
=e1−k/m /m. Again, homogeneous trees are generated by se-
lecting m=1. The random Cayley �RC� tree, on the other
hand, is generated by adding z neighbors to a randomly se-
lected leaf �i.e., a vertex whose degree is k=1� at each time
step s �z+1 neighbors are added to the first vertex�. The
resulting tree contains only vertices with degree k=z+1, and
leaves with k=1.
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To check our results against looped structures, we have
considered the uncorrelated configuration model �UCM�
�22�, yielding uncorrelated networks with any prescribed SF
degree distribution. The model is defined as follows. �1� As-
sign to each vertex i in a set of N initially disconnected
vertices a degree ki, extracted from the probability distribu-
tion P�k��k−�, and subject to the constraints m�ki�N1/2

and �iki even. �2� Construct the network by randomly con-
necting the vertices with �iki /2 edges, respecting the preas-
signed degrees and avoiding multiple and self-connections.
Using this algorithm, it is possible to create SF networks
which are completely uncorrelated. Additionally, by selecting
the minimum degree m�2, we generate connected networks
with probability almost 1. The effect of correlations in
looped structures can be checked by means of the configu-
ration model �CM� �9�, which is analogous to the UCM, but
allows degrees to range in the interval m�ki�N �23�. In all
present simulations, we set m=4 for looped neworks, tree
networks corresponding to m=1 �z=4 for the RC tree�.

III. RANDOM WALK EXPLORATION

We start by studying two properties of a random walk that
quantify the speed at which it explores its neighborhood in
the network. The first one is the coverage S�t�, defined as the
number of different vertices visited by a walker at time t,
averaged for different random walks starting from different
sources. For looped networks, the coverage reaches after a
short transient the functional form �24,25� SL�t�� t,1 in ac-
cordance with theoretical calculations for the Bethe lattice
�26�, and eventually saturates to SL���=N, due to finite-size
effects. A scaling form for the coverage has been proposed
�24� to be SL�t�=Nf�t /N�, with f�x��x for x�1 and f�x�
�1 for x�1.

The origin of the scaling of the coverage with system size
can be understood by means of a simple dynamic mean-field
argument. Let us define 	k�t� as the probability that a vertex
of degree k hosts the random walker at time t. During the
evolution of the random walk, this probability satisfies, in a
general network with a correlation pattern given by the con-
ditional probability P��k��k� that a vertex of degree k is con-
nected to another vertex of degree k� �16�, the mean-field
equation

�	k�t�
�t

= − 	k�t� + k�
k�

P��k��k�
k�

	k��t� . �1�

In the steady state, �t	k�t�=0, the solution of this equation,
for any correlation pattern, is given by the normalized distri-
bution �18,27�

	k�t� =
k

�k	N
. �2�

Let us now define the coverage spectrum sk�t� as fraction of
vertices of degree k visited by the random walker at least

once. Obviously, we have that S�t�=N�kP�k�sk�t�. The spec-
trum sk�t� increases in time as the random walk arrives to
vertices that have never been visited. Therefore, at a mean-
field level, it satisfies the rate equation

�sk�t�
�t

= k�1 − sk�t���
k�

P��k��k�
k�

	k��t� . �3�

Approximating 	k��t� by its steady-state value �for not too
small times�, we obtain

�sk�t�
�t

= �1 − sk�t��
k

�k	N
, �4�

whose solution with the initial condition sk�0�=0 is

sk�t� = 1 − exp
−
kt

�k	N
� . �5�

We therefore are led to the general scaling expression

S�t�
N

= 1 − �
k

P�k�exp
−
kt

�k	N
� . �6�

In the limit of kt / �k	N�1, we recover the exact result S�t�
� t �26�. For SF networks, we obtain within the continuous
degree approximation

S�t�
N

= 1 − �� − 1�m�−1�
m

�

k−� exp
−
kt

�k	N
�dk = 1 − ��

− 1�E�
 mt

�k	N
� , �7�

where E��z� is the exponential integral function �28�. For EM
networks, on the other hand, we find

S�t�
N

= 1 −
e

m
�

m

�

e−k/m exp
−
kt

�k	N
�dk = 1 −

e−mt/�k	N

1 + mt/�k	N
.

�8�

In Fig. 1, we can observe that the scaling predicted by Eq.
�5� for the coverage spectrum sk�t� is very well satisfied in
looped complex networks, independently of their homoge-
neous or SF nature, and, in this last case, of the degree ex-
ponent and the presence or absence of correlations. In Fig. 2,
on the other hand, we plot the total coverage SL�t� /N, which
can be fitted quite correctly by the analytical expressions
Eqs. �7� and �8� for SF and EM networks.

On tree networks we find a different scenario. In Fig. 3 we
can see that the coverage spectrum does not scale as pre-
dicted by our mean-field argument. While we do not have
theoretical predictions for the correct scaling form, a numeri-
cal analysis of the total coverage, Fig. 4, shows that, at short
times, it grows in trees as ST�t�� t / ln�t�, preserving an ap-
proximate scaling form

ST�t� = Nf
 t

ln�t�N� , �9�

with a scaling function f�x� that depends slightly on the net-
work details �degree exponent, correlations, etc.�. This obser-

1In the following, the subscripts L and T will indicate looped and
tree networks, respectively.
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vation indicates the presence of a general slowing down
mechanism in the random walk dynamics in trees: the dy-
namics turns out to be more recurrent and therefore it is more
costly to find new vertices during the walk. It is easy to see
that this situation will correspond to a walker deep in the
leaves of a subtree that it has otherwise completely explored.
In order to find new vertices, the walker must first find the
exit from the subtree. This difficulty in finding new vertices
can be directly measured by the time lag 
t between the
discovery of two new vertices. In Fig. 5 we plot the prob-
ability distribution of time lags, P�
t�, computed for the dis-
covery of the first 1% of the network, for looped and tree
structures. We observe that, in looped networks, this distri-
bution takes an exponential form, compatible with an almost
constant time lag between the discovery of two new vertices.
In tree networks, this distribution shows instead long tails,
that can be fitted to a log-normal form, indicating that, in

some events �i.e., when the walker is trapped in one leaf in a
subtree�, the discovery of a new vertex can take an unusually
large time.

Acute signatures of slowing down can be found also in
the analysis of the mean topological displacement �MTD�
d̄�t� of the walker from its origin at time t, defined as the
shortest path length from the vertex of origin of the random
walk to the vertex it occupies at time t, averaged over differ-
ent source vertices and different random walk realizations. In
other works, the mean square topological displacement �RM-
STD� d2�t� �25,29� was instead considered. In complex net-
works, and since the shortest path length is a positive definite
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FIG. 1. �Color online� Coverage spectrum sk�t� in looped com-
plex networks as a function of kt / �k	N. Top: Curves for the same
degree and different network size N. Bottom: Curves for different
degrees and fixed network size.
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quantity, both quantities yield the same scaling result, i.e.,

d2�t���d̄�t��2.2

In looped networks �see Fig. 6� we observe a very rapid
increase of the MTD with time. In previous work �29�, the
growth of the average distance �there measured instead as the

RMSTD� was found to be a power law d̄�t�� t� at early
times in SF networks, with the exponent � depending on the
degree exponent. In our simulations on looped networks gen-
erated with different algorithms, we do not find a clear sig-
nature for a power law behavior, which can only be approxi-
mately found in a tiny range of values of t at the very
beginning of the walk, even for networks of size N=106. At
large times, on the other hand, the MTD reaches a plateau

d̄���= �d̄	, due to finite size effects. The value of this plateau
can be estimated using simple quantitative arguments. As-

sume that the random walker starts from a source vertex of
degree k. During its dynamics in the steady state, it visits
vertices of degree k� with probability �see Eq. �2�� k� / �k	N.
On the other hand, vertices of degree k and k� are, on aver-
age, at a topological distance �30,31� dk,k�; therefore, we ex-
pect the random walker to be at an average distance from a
source of degree k

�d̄	k = �
k�

k�P�k��
�k	

dk,k�. �10�

A further average over all possible sources leads to an aver-
age distance of the walker given by

�d̄	 = �
k

P�k��d̄	k = �
k

kP�k�
�k	

dk, �11�

where dk=�k�P�k��dk,k� is the mean topological distance
from any vertex to a given vertex of degree k �31�. The

scaling of �d̄	 with system size can be easily predicted as-
suming the expressions of dk in Ref. �31�, namely,

dk  A ln
 N

k��−1�/2� �SF networks� , �12�

dk  A� ln N − B�k �exponential networks� , �13�

where A, A�, and B� are size-independent constants. This
yields in both cases

�d̄	  ln N . �14�

Turning to the numerical data for looped networks in Fig.
7, we observe that they are compatible with a scaling behav-
ior of the form

d̄L�t� = �d̄	f
 t

�d̄	
� . �15�

This scaling indicates that, after a short characteristic time

tc��d̄	� ln N, the walker is on average as far from the ori-

2Differences can, however, appear in networks with an underlying
metric space, such as the Watts-Strogatz network �42� for rewiring
parameter p�1; see Ref. �25�.
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gin as it can be, and it can therefore freely explore the whole
network.

In trees, Fig. 8, on the other hand, we observe a much
slower growth of the MTD at early times, which can be
approximately fitted with the form

d̄T�t� � �ln t��, �16�

where the exponent � depends on the details of the network.

The whole function d̄T�t� is also observed to satisfy the scal-
ing form

d̄T�t� = �d̄	f
 ln t

�d̄	1/�� . �17�

This form implies that the characteristic time to escape from
the neighborhood of the origin scales as tc�exp��d	1/��
�exp��ln N�1/��, which means that the exploration process is
much slower in trees, with the walker spending large
amounts of time exploring the close vicinity of the origin of
the walk. We remark that here the scaling function f�x� dis-
plays some further dependences on degree exponent, average
degree, and degree correlations in both looped and tree net-
works.

The fact that the presence of a treelike structure slows
down the distance explored by a random walker on a net-
work allows us to interpret the results presented in Ref. �29�,
in particular the power law behavior at initial times of d̄�t�.
In fact, in Ref. �29�, the substrates for the random walk simu-
lations were SF networks generated with the CM model with
minimum degree m=1. In this case, simulations were per-
formed on the giant component. Apart from the possible ef-
fect of degree correlations for ��3, the point is that, for
m=1, traces of treelike structure are still present in the net-
work, in the form of chains of small-degree vertices �32�.
Thus, a remnant slowing down effect of the tree component

is observed �see Fig. 9�, leading to a MTD that, at short

times, scales as d̄�t�� t0.55 for the data at m=1 shown in this
graph, in excellent agreement with the observation in �29�,
namely, d̄2�t�� t1.1 for the RMSTD.

A further remark concerns the relation between our results
and the above-mentioned analytical calculations for Bethe
lattices �26�, according to which these structures exhibit a
behavior analogous to the one observed in looped networks.
The apparent incongruity vanishes when we note that, while
Bethe lattices are infinite hierarchical structures, we have
focused on complex �i.e., disordered� finite trees. To recover
the Bethe lattice behavior numerically, indeed, it is necessary
to adopt special algorithms in order to simulate an infinite
hierarchical tree �33,34�.

IV. MEAN FIRST PASSAGE TIME

More information about the dynamics of random walks
can be extracted from the analysis of the mean first passage
time �MFPT� �35� ��i→ j�, defined as the average time that a
random walker takes to arrive for the first time at vertex j,
starting from vertex i �27�. In networks with no translation
symmetry, the MFPT from a source i to a target j need not be
equal to the MFTP from source j to target i. Therefore, dif-
ferent reduced MFPTs can be considered. We can thus define
the direct MFTP �→�k� as the MFPT on a target vertex of
degree k, starting from a randomly chosen source vertex, and
the inverse MFPT �←�k� as the MFTP on a randomly target
vertex, starting from a source vertex of degree k, namely,

�→�k� =
1

N
�

i

1

Nk
�

j�V�k�
��i → j� , �18�

�←�k� =
1

N
�

j

1

Nk
�

i�V�k�
��i → j� , �19�

where V�k� is the set of vertices of degree k and Nk is the
number of such vertices. A simple argument can predict the
form of the MFPTs for random uncorrelated networks. In this
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case, the probability for the walker to arrive at a vertex i, in
a hop following a randomly chosen edge, is given by q�i�
=q�ki�=ki / �k	N �36�. Therefore, the probability of arriving at
vertex i for the first time after t hops is Pa�i ; t�= �1
−q�i��t−1q�i�. The direct MFTP to vertex i can thus be esti-
mated as the average

�→�ki� = �
t

tPa�i;t� =
�k	N

ki
. �20�

For the inverse MFPT, we notice that, in a random network,
after the first hop, the walker loses completely the memory
of its source degree; therefore we can approximate

�←�k� � �
k

P�k��→�k� = �k	�k−1	N . �21�

Less trivial approaches �27,37� show in fact that the MFPT
from a source vertex i to a target vertex j depends on the
degree of the target vertex as ��i→ j��1 /kj, but has a re-
sidual dependence on the source vertex and is actually asym-
metric, ��i→ j����j→ i�. This fact could in principle affect
the form of the reduced MFPTs in real networks, defined in
Eqs. �18� and �19�. Figure 10, however, shows that for
looped networks the behavior predicted for random uncorre-
lated networks turns out to be extremely robust with respect
to changes in the topological properties of the network: ho-
mogeneous or heterogenous nature, degree exponent, pres-
ence or absence of correlations, etc. �29,37,38�.

In trees, on the other hand, we find a completely different
picture; see Fig. 11. Now, the direct MFPT in SF trees decays
with k much more slowly than in looped networks. In fact,
we can fit it numerically to the form

�T
→�k� = C1N ln N − C2N ln�k + C3� , �22�

where C1, C2, and C3 are fitting parameters that depend only
slightly on the network size. The N ln N dependence can be
directly observed by plotting �T

→�1� for different system
sizes, as shown in Fig. 12. For homogeneous EM networks,

on the other hand, the direct MFPT can be fitted to the form

�T
→�k� = D1N ln N − D2Nk �23�

�see inset in Fig. 11�. The scaling of �T
→�1� in this case is also

checked in Fig. 12. With respect to the inverse MFTP, it is
again constant, but now scales with system size as �T

←�k�
�N ln N for all kinds of trees �inset in Fig. 12�.

The topological structure of the trees can explain the un-
usual form of the MFPTs. While in looped networks the
number of access paths to the target vertex is related to its
degree, on the tree the path is unique, and is given by the
one-dimensional set of links and vertices connecting the
starting vertex to the target. In this case, the degree of the
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target is much less important from the point of view of the
walker, since finding the target corresponds to finding a par-
ticular leaf �i.e., a k=1 vertex� of the subtree the random
walker is exploring. This observation suggests that, while in
looped networks the MFPT into a vertex is dominated by its
degree �because the latter is related to the multiplicity of the
entry paths to the vertex�, in trees the distance between the
source and the target can be much more relevant, and thus
induce a larger MFPT.

We therefore consider the MFPT as a function of the to-
pological distance dij between the starting vertex i and the
target j �37,39�. Since the distance between two vertices is
by definition a symmetric quantity, it seems natural to rede-
fine the MFPT in terms of the symmetric mean round trip
time �MRTT�

�̄�dij� = ��i → j� + ��j → i� , �24�

i.e., the average time to go from i to j and back or vice versa.
It has been recently proved �39� that, for complex scale-
invariant networks, the MRTT averaged for all vertices at the
same distance scales as

�̄�d�  NdDw−Db, �25�

where Db is the box dimension of the network and Dw its
walk exponent �40�. For a class of scale-invariant networks
�40� corresponding to a tree structure, for which Dw−Db=1,
the authors of Ref. �39� obtained correspondingly a linear
scaling �̄T�d�Nd. We have checked that this linear form
holds for different SF, EM, and RC trees �see Fig. 13�, a
result that leads us to conjecture that, for any complex tree,
Dw−Db=1.

We can use the result in Eq. �25� to gain insight into the
behavior of the anomalous reduced MFPTs in tree networks.
Considering an average over all vertices with the same de-
gree, we have that �̄�dkk��=��k→k��+��k�→k�. Averaging
now over k�, we can consider the reduced MRTT

�̄�k� = �
k�

P�k�����k → k�� + ��k� → k�� = �←�k� + �→�k� ,

�26�

defined as the average time to go from a randomly chosen
vertex to a given vertex of degree k and back �or vice versa,
since the MRTT is symmetric�. Now, since �̄�dkk�� is linear in
dkk� for tree networks, we have

�̄�k�  �
k�

P�k��Ndkk� = Ndk. �27�

Assuming the scaling of dk as given by Eqs. �12� and �13�,
we obtain

�̄T�k�  NA ln
 N

k��−1�/2� �28�

for SF networks and

�̄T�k�  N�A� ln N − B�k� �29�

for EM networks. The unknown constant in Eq. �28� can be
reabsorbed in the value of �̄T�1�, to obtain a scaling form
with system size for SF networks that reads

�̄T�k�
�̄T�1�

�
1

ln N
ln
 N

k��−1�/2� . �30�

In Fig. 14 we show that this scaling form is very well satis-
fied by the MRTT in SF trees, independently of the degree
exponent and correlation patterns, at least for intermediate
values of k. The observed bending at small degrees can be
ascribed to the presence of a constant in the logarithm analo-
gous to the empirical parameter C3 in Eq. �22�, that does not
follow from our argument. Finite size effects, on the other
hand, are responsible for the deviations present at large de-
grees, that are indeed more evident in SF trees with smaller
values of �.
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This observations allow us to interpret the anomalous
functional form of the reduced MFTPs observed in trees.
From Eq. �26�, we have

�T
→�k� = �̄T�k� − �T

←�k� . �31�

Writing �T
←�k��CN ln N, from Eq. �28� we obtain, for SF

networks,

�T
→�k� � �A − C�N ln N −

A�� − 1�
2

N ln k , �32�

while for homogeneous EM networks, we have

�T
→�k� � �A� − C�N ln N − B�Nk , �33�

in agreement with the empirical fitting found in Eqs. �22� and
�23�.

This argument cannot be extended to looped networks,
since here �̄�dkk�� is not linear in dkk�. The k dependence of
the MRTT can however be trivially obtained from the re-
duced MFPTs as �̄L�k�=�L

→�k�+�L
←�k��k	N��k−1	+1 /k�.

V. CONCLUSIONS

In this paper, we have shown that complex treelike to-
pologies heavily affect the behavior of a random walk per-
formed on top of them, with a global slowing down of the
dynamics and a logarithmic dependence of the first passage
time properties in SF networks. These features are intrinsi-
cally connected with the complex tree structure and cannot
be attributed to the mere presence of leaves, while they are

radically different from the ones exhibited by Bethe lattices,
i.e., infinite and hierarchical tree structures.

We have studied the random walk exploration properties
and we have shown that complex trees induce a slower dy-
namics, compared to looped networks, for both the coverage
and the mean topological displacement problems. Moreover,
by means of the analysis of the symmetrized MFPT �the
MRTT�, we have been able to recognize the different role
played by the degree k of the target vertex in looped and tree
structures. In the former, a larger degree corresponds to a
larger number of access ways to the target vertex. In the
latter, on the other hand, the target vertex is always seen as a
leaf by the random walker, and its degree k affects the MFPT
only through the dependence of the average distance dk be-
tween it and the rest of the vertices. These results provide
important insights into diffusion problems on trees, and help
to explain the characteristic slow dynamics observed in dif-
fusive processes taking place on top of tree networks
�12–14�. Moreover, they are also interesting in the study of
dynamics in real-world networks, in which the so-called bor-
der tree motifs �41� have been recently shown to be signifi-
cantly present.
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